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Project Goals
l Apply the latest HPC technology to

coastal operations & planning
l Modify CGWAVE, an existing serial,

production code
– Increase model resolution
– Improve simulation turnaround time
– Very little source code alteration
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Applications
l Military and civil works
l Forecasting tool of DoD
l Harbors resonate at natural

frequencies
– Evaluate placement of wave gauges for

harbor monitoring
– Determine where problem mooring and

on/off loading conditions may occur
– Select optimum sites for amphibious

operations
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Computer model
l CGWAVE

– Serial code is production harbor wave
climate and response tool

– Results used by
• US Department of Defense
• Lloyds of London

– Method
• Elliptic mild-slope wave equation
• Leads to an independent Helmholtz-type

equation for each incident wave component
• Resulting large, sparse systems solved via

conjugate gradient
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Computer model

Two kinds of resolution
•spatial (finite element mesh, bathymetry)
•sea-state (number of incident waves)

CGWAVE
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Parallel implementation issues
l NUMA requires attention to data

placement with OpenMP
– “first touch” principle on SGI/CRAY

Origin2000

l Two load-balancing schemes tested
– Round-robin

• static
• efficiency depends on set ordering

– Boss-worker
• dynamic
• independent of set ordering, system load
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Dynamic load balancing
l Worker:

 do infinite loop

      blocking send      ! ask boss for work
      blocking receive   ! get component
      if (not termination signal) then

         Perform calculations to solve wave
component

      else
         exit infinite loop
      endif
  enddo
  MPI_Finalize

l Boss:

    do i = 1, number_of_wave_components

         blocking receive   ! wait for work request
         blocking send      ! send work order
    enddo
   ! All wave components solved
    do worker = 1, nprocs - 1
         blocking receive  ! wait for work request
         blocking send      ! fire worker
    enddo
    MPI_Finalize
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Two sample problem sets
l Coarse mesh: 50,000 elements
l Fine mesh: 150,000 elements

l 75 incident waves in sea state
– five periods
– 15 directions
– 40 amplitudes



10

Why load balancing is necessary
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Load-balanced wallclock time
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MPI_Connect
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MPI_Connect algorithm
l Worker:

 connect with boss   ! intercomm set-up

 do infinite loop
      blocking send      ! ask boss for work
      blocking receive   ! get component
      if (not termination signal) then

         Perform calculations to solve wave
component

      else
         exit infinite loop
      endif
   enddo
   MPI_Finalize

l Boss:

    connect with worker groups  ! intercomm set-up

     do i = 1, number_of_wave_components
         probe for worker request     ! busy wait on comm
         blocking receive
         blocking send      ! send work order
    enddo
   ! All wave components solved
    do worker = 1, nworkers
         probe for worker request     ! busy wait on comm
         blocking receive
         blocking send      ! fire worker
    enddo
    MPI_Finalize
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Application
l Ponce Inlet, FL

– 45 miles NE of
Orlando

– Studies of
erosion control
and boat
capsizing

Ponce
Inlet

N
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Application: Ponce Inlet, FL
Model bathymetry

•25 square kilometers
•118,000 grid points
•235,000 finite elements

Jetty

Inlet
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Application: Ponce Inlet, FL
Sea state model

•Only the dominant incident wave
component

Computed surface elevation 

Jetty

Inlet

t = 1.000 T



18

Application: Ponce Inlet, FL
Sea state model

•293 incident wave components
•10 distinct periods

Computed surface elevation 

Jetty

Inlet
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Application: Ponce Inlet, FL
l Fastest component took 14 hours on

a single processor
l Total estimated CPU time:
    14 hrs x 300 components = 4,200 hrs (six months)

l  With 60 processors (MPI only) we
solved it over the weekend (less than
72 hrs)
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Summary
l Demonstrated dual-level parallelism

– MPI and OpenMP feasible and beneficial
– Nested algorithm very scalable
– Suitable to engineering applications

which explore a parameter space

l Demonstrated MPI_Connect across
DoD MSRC’s

l Dual-level algorithm solved in six
minutes what previously took two
weeks
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Implications
l Allows modeling of larger regions

– Ponce Inlet grid is about 25 sq km
– DoD wants about 250 sq km

l Allows more realistic sea state model
– Current state-of-the-art: ~50 components
– Ponce Inlet: 293 components;  impractical

with original code
– DoD would like ~1000 wave components

l Can exploit MPI_Connect to address
extremely large problems
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